Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice.

نویسندگان

  • S Schulz
  • M J Lopez
  • M Kuhn
  • D L Garbers
چکیده

Heat-stable enterotoxins (STa), which cause an acute secretory diarrhea, have been suggested to mediate their actions through the guanylyl cyclase-C (GC-C) receptor. The GC-C gene was disrupted by insertion of neo into exon 1 and subsequent homologous recombination. GC-C null mice contained no detectable GC-C protein. Intestine mucosal guanylyl cyclase activity was approximately 16-fold higher in wild-type mice than in the GC-C null mice, and STa-stimulable guanylyl cyclase activity was absent in the null animals. Thus, GC-C is the major cyclase activity present in the intestine, and also completely accounts for the STa-induced elevations of cGMP. Gavage with STa resulted in marked fluid accumulation within the intestine of wild-type and heterozygous suckling mice, but GC-C null animals were resistant. In addition, infection with enterotoxigenic bacteria that produce STa led to diarrhea and death in wild-type and heterozygous mice, while the null mice were protected. Cholera toxin, in contrast, continued to cause diarrhea in GC-C null mice, demonstrating that the cAMP signaling pathway remained intact. Markedly different diets (high carbohydrate, fat, or protein) or the inclusion of high salt (K+, Na+) in the drinking water or diet also did not severely affect the null animals. Given that GC-C is a major intestinal receptor in all mammals, the pressure to retain a functional GC-C in the face of diarrhea-inflicted mortality remains unexplained. Therefore, GC-C likely provides a protective effect against stressors not yet tested, possibly pathogens other than noninvasive enterotoxigenic bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Hybrid Gene of Hepatitis B Surface Antigen Carrying Heat-Stable Enterotoxin of Escherichia coli and Its Expression in Mammalian Cell Line

Hepatitis B surface antigen is the first genetically engineered vaccine licensed for human use. Various strategies have been proposed to obtain a vaccine that would bypass the need for injection. In this study, a non-toxic portion of heat-stable enterotoxin of Escherichia coli that is capable of adhering to epithelial cells was inserted at amino acid position 112 of hepatitis surface antigen. T...

متن کامل

Cure and Curse: E. coli Heat-Stable Enterotoxin and Its Receptor Guanylyl Cyclase C

Enterotoxigenic Escherichia coli (ETEC) associated diarrhea is responsible for roughly half a million deaths per year, the majority taking place in developing countries. The main agent responsible for these diseases is the bacterial heat-stable enterotoxin STa. STa is secreted by ETEC and after secretion binds to the intestinal receptor guanylyl cyclase C (GC-C), thus triggering a signaling cas...

متن کامل

Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior.

One of two orphan photoreceptor guanylyl cyclases that are highly conserved from fish to mammals, GC-E (or retGC1) was eliminated by gene disruption. Expression of the second retinal cyclase (GC-F) as well as the numbers and morphology of rods remained unchanged in GC-E null mice. However, rods isolated from such mice, despite having a normal dark current, recovered from a light flash markedly ...

متن کامل

Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation.

In the human genome, sequence analysis indicates there are five functional transmembrane guanylyl cyclases, enzymes that synthesize the intracellular second messenger, cGMP. Two, GC-A and GC-B or NPR-A and NPR-B, are widely distributed receptors for atrial natriuretic peptide, brain natriuretic peptide and C-type natriuretic peptide, more commonly known as ANP, BNP and CNP, respectively. One cy...

متن کامل

تولید و تخلیص آنتروتوکسین مقاوم به حرارت یرسینیا آنتروکلی تیکا

Since the heat-stable enterotoxin (ST) produced by yersinia enterocolitica is similar to enterotoxin production by E. coli, it is probably classified among toxinogenic bacteria. The culture filtrate of ST-producing strains of Y. enterocolitica is able to activate Guanylate cyclase and to increase fluid accumulation action of cylic Guanosin 3', 5' - monophosphate (cGMP) in sucking mouse intestin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 100 6  شماره 

صفحات  -

تاریخ انتشار 1997